類型化數(shù)組是JavaScript操作二進制數(shù)據的一個接口。
這要從WebGL項目的誕生說起,所謂WebGL,就是指瀏覽器與顯卡之間的通信接口,為了滿足JavaScript與顯卡之間大量的、實時的數(shù)據交換,它們之間的數(shù)據通信必須是二進制的,而不能是傳統(tǒng)的文本格式。
比如,以文本格式傳遞一個32位整數(shù),兩端的JavaScript腳本與顯卡都要進行格式轉化,將非常耗時。這時要是存在一種機制,可以像C語言那樣,直接操作字節(jié),然后將4個字節(jié)的32位整數(shù),以二進制形式原封不動地送入顯卡,腳本的性能就會大幅提升。
類型化數(shù)組(Typed Array)就是在這種背景下誕生的。它很像C語言的數(shù)組,允許開發(fā)者以數(shù)組下標的形式,直接操作內存。有了類型化數(shù)組以后,JavaScript的二進制數(shù)據處理功能增強了很多,接口之間完全可以用二進制數(shù)據通信。
類型化數(shù)組是建立在ArrayBuffer對象的基礎上的。它的作用是,分配一段可以存放數(shù)據的連續(xù)內存區(qū)域。
var buf = new ArrayBuffer(32);
上面代碼生成了一段32字節(jié)的內存區(qū)域。
ArrayBuffer對象的byteLength屬性,返回所分配的內存區(qū)域的字節(jié)長度。
var buffer = new ArrayBuffer(32);
buffer.byteLength
// 32
如果要分配的內存區(qū)域很大,有可能分配失敗(因為沒有那么多的連續(xù)空余內存),所以有必要檢查是否分配成功。
if (buffer.byteLength === n) {
// 成功
} else {
// 失敗
}
ArrayBuffer對象有一個slice方法,允許將內存區(qū)域的一部分,拷貝生成一個新的ArrayBuffer對象。
var buffer = new ArrayBuffer(8);
var newBuffer = buffer.slice(0,3);
上面代碼拷貝buffer對象的前3個字節(jié),生成一個新的ArrayBuffer對象。slice方法其實包含兩步,第一步是先分配一段新內存,第二步是將原來那個ArrayBuffer對象拷貝過去。
slice方法接受兩個參數(shù),第一個參數(shù)表示拷貝開始的字節(jié)序號,第二個參數(shù)表示拷貝截止的字節(jié)序號。如果省略第二個參數(shù),則默認到原ArrayBuffer對象的結尾。
除了slice方法,ArrayBuffer對象不提供任何直接讀寫內存的方法,只允許在其上方建立視圖,然后通過視圖讀寫。
ArrayBuffer作為內存區(qū)域,可以存放多種類型的數(shù)據。不同數(shù)據有不同的存儲方式,這就叫做“視圖”。目前,JavaScript提供以下類型的視圖:
每一種視圖都有一個BYTES_PER_ELEMENT常數(shù),表示這種數(shù)據類型占據的字節(jié)數(shù)。
Int8Array.BYTES_PER_ELEMENT // 1
Uint8Array.BYTES_PER_ELEMENT // 1
Int16Array.BYTES_PER_ELEMENT // 2
Uint16Array.BYTES_PER_ELEMENT // 2
Int32Array.BYTES_PER_ELEMENT // 4
Uint32Array.BYTES_PER_ELEMENT // 4
Float32Array.BYTES_PER_ELEMENT // 4
Float64Array.BYTES_PER_ELEMENT // 8
每一種視圖都是一個構造函數(shù),有多種方法可以生成:
(1)在ArrayBuffer對象之上生成視圖。
同一個ArrayBuffer對象之上,可以根據不同的數(shù)據類型,建立多個視圖。
// 創(chuàng)建一個8字節(jié)的ArrayBuffer
var b = new ArrayBuffer(8);
// 創(chuàng)建一個指向b的Int32視圖,開始于字節(jié)0,直到緩沖區(qū)的末尾
var v1 = new Int32Array(b);
// 創(chuàng)建一個指向b的Uint8視圖,開始于字節(jié)2,直到緩沖區(qū)的末尾
var v2 = new Uint8Array(b, 2);
// 創(chuàng)建一個指向b的Int16視圖,開始于字節(jié)2,長度為2
var v3 = new Int16Array(b, 2, 2);
上面代碼在一段長度為8個字節(jié)的內存(b)之上,生成了三個視圖:v1、v2和v3。視圖的構造函數(shù)可以接受三個參數(shù):
因此,v1、v2和v3是重疊:v1[0]是一個32位整數(shù),指向字節(jié)0~字節(jié)3;v2[0]是一個8位無符號整數(shù),指向字節(jié)2;v3[0]是一個16位整數(shù),指向字節(jié)2~字節(jié)3。只要任何一個視圖對內存有所修改,就會在另外兩個視圖上反應出來。
(2)直接生成。
視圖還可以不通過ArrayBuffer對象,直接分配內存而生成。
var f64a = new Float64Array(8);
f64a[0] = 10;
f64a[1] = 20;
f64a[2] = f64a[0] + f64a[1];
上面代碼生成一個8個成員的Float64Array數(shù)組(共64字節(jié)),然后依次對每個成員賦值。這時,視圖構造函數(shù)的參數(shù)就是成員的個數(shù)。可以看到,視圖數(shù)組的賦值操作與普通數(shù)組的操作毫無兩樣。
(3)將普通數(shù)組轉為視圖數(shù)組。
將一個數(shù)據類型符合要求的普通數(shù)組,傳入構造函數(shù),也能直接生成視圖。
var typedArray = new Uint8Array( [ 1, 2, 3, 4 ] );
上面代碼將一個普通的數(shù)組,賦值給一個新生成的8位無符號整數(shù)的視圖數(shù)組。
視圖數(shù)組也可以轉換回普通數(shù)組。
var normalArray = Array.apply( [], typedArray );
建立了視圖以后,就可以進行各種操作了。這里需要明確的是,視圖其實就是普通數(shù)組,語法完全沒有什么不同,只不過它直接針對內存進行操作,而且每個成員都有確定的數(shù)據類型。所以,視圖就被叫做“類型化數(shù)組”。
(1)數(shù)組操作
普通數(shù)組的操作方法和屬性,對類型化數(shù)組完全適用。
var buffer = new ArrayBuffer(16);
var int32View = new Int32Array(buffer);
for (var i=0; i<int32View.length; i++) {
int32View[i] = i*2;
}
上面代碼生成一個16字節(jié)的ArrayBuffer對象,然后在它的基礎上,建立了一個32位整數(shù)的視圖。由于每個32位整數(shù)占據4個字節(jié),所以一共可以寫入4個整數(shù),依次為0,2,4,6。
如果在這段數(shù)據上接著建立一個16位整數(shù)的視圖,則可以讀出完全不一樣的結果。
var int16View = new Int16Array(buffer);
for (var i=0; i<int16View.length; i++) {
console.log("Entry " + i + ": " + int16View[i]);
}
// Entry 0: 0
// Entry 1: 0
// Entry 2: 2
// Entry 3: 0
// Entry 4: 4
// Entry 5: 0
// Entry 6: 6
// Entry 7: 0
由于每個16位整數(shù)占據2個字節(jié),所以整個ArrayBuffer對象現(xiàn)在分成8段。然后,由于x86體系的計算機都采用小端字節(jié)序(little endian),相對重要的字節(jié)排在后面的內存地址,相對不重要字節(jié)排在前面的內存地址,所以就得到了上面的結果。
比如,一個占據四個字節(jié)的16進制數(shù)0x12345678,決定其大小的最重要的字節(jié)是“12”,最不重要的是“78”。小端字節(jié)序將最不重要的字節(jié)排在前面,儲存順序就是78563412;大端字節(jié)序則完全相反,將最重要的字節(jié)排在前面,儲存順序就是12345678。目前,所有個人電腦幾乎都是小端字節(jié)序,所以類型化數(shù)組內部也采用小端字節(jié)序讀寫數(shù)據,或者更準確的說,按照本機操作系統(tǒng)設定的字節(jié)序讀寫數(shù)據。
這并不意味大端字節(jié)序不重要,事實上,很多網絡設備和特定的操作系統(tǒng)采用的是大端字節(jié)序。這就帶來一個嚴重的問題:如果一段數(shù)據是大端字節(jié)序,類型化數(shù)組將無法正確解析,因為它只能處理小端字節(jié)序!為了解決這個問題,JavaScript引入DataView對象,可以設定字節(jié)序,下文會詳細介紹。
下面是另一個例子。
// 假定某段buffer包含如下字節(jié) [0x02, 0x01, 0x03, 0x07]
// 計算機采用小端字節(jié)序
var uInt16View = new Uint16Array(buffer);
// 比較運算
if (bufView[0]===258) {
console.log("ok");
}
// 賦值運算
uInt16View[0] = 255; // 字節(jié)變?yōu)閇0xFF, 0x00, 0x03, 0x07]
uInt16View[0] = 0xff05; // 字節(jié)變?yōu)閇0x05, 0xFF, 0x03, 0x07]
uInt16View[1] = 0x0210; // 字節(jié)變?yōu)閇0x05, 0xFF, 0x10, 0x02]
總之,與普通數(shù)組相比,類型化數(shù)組的最大優(yōu)點就是可以直接操作內存,不需要數(shù)據類型轉換,所以速度快得多。
(2)buffer屬性
類型化數(shù)組的buffer屬性,返回整段內存區(qū)域對應的ArrayBuffer對象。該屬性為只讀屬性。
var a = new Float32Array(64);
var b = new Uint8Array(a.buffer);
上面代碼的a對象和b對象,對應同一個ArrayBuffer對象,即同一段內存。
(3)byteLength屬性和byteOffset屬性
byteLength屬性返回類型化數(shù)組占據的內存長度,單位為字節(jié)。byteOffset屬性返回類型化數(shù)組從底層ArrayBuffer對象的哪個字節(jié)開始。這兩個屬性都是只讀屬性。
var b = new ArrayBuffer(8);
var v1 = new Int32Array(b);
var v2 = new Uint8Array(b, 2);
var v3 = new Int16Array(b, 2, 2);
v1.byteLength // 8
v2.byteLength // 6
v3.byteLength // 4
v1.byteOffset // 0
v2.byteOffset // 2
v3.byteOffset // 2
注意將byteLength屬性和length屬性區(qū)分,前者是字節(jié)長度,后者是成員長度。
var a = new Int16Array(8);
a.length // 8
a.byteLength // 16
(4)set方法
類型化數(shù)組的set方法用于復制數(shù)組,也就是將一段內容完全復制到另一段內存。
var a = new Uint8Array(8);
var b = new Uint8Array(8);
b.set(a);
上面代碼復制a數(shù)組的內容到b數(shù)組,它是整段內存的復制,比一個個拷貝成員的那種復制快得多。set方法還可以接受第二個參數(shù),表示從b對象哪一個成員開始復制a對象。
var a = new Uint16Array(8);
var b = new Uint16Array(10);
b.set(a,2)
上面代碼的b數(shù)組比a數(shù)組多兩個成員,所以從b[2]開始復制。
(5)subarray方法
subarray方法是對于類型化數(shù)組的一部分,再建立一個新的視圖。
var a = new Uint16Array(8);
var b = a.subarray(2,3);
a.byteLength // 16
b.byteLength // 2
subarray方法的第一個參數(shù)是起始的成員序號,第二個參數(shù)是結束的成員序號(不含該成員),如果省略則包含剩余的全部成員。所以,上面代碼的a.subarray(2,3),意味著b只包含a[2]一個成員,字節(jié)長度為2。
(6)ArrayBuffer與字符串的互相轉換
ArrayBuffer轉為字符串,或者字符串轉為ArrayBuffer,有一個前提,即字符串的編碼方法是確定的。假定字符串采用UTF-16編碼(JavaScript的內部編碼方式),可以自己編寫轉換函數(shù)。
// ArrayBuffer轉為字符串,參數(shù)為ArrayBuffer對象
function ab2str(buf) {
return String.fromCharCode.apply(null, new Uint16Array(buf));
}
// 字符串轉為ArrayBuffer對象,參數(shù)為字符串
function str2ab(str) {
var buf = new ArrayBuffer(str.length*2); // 每個字符占用2個字節(jié)
var bufView = new Uint16Array(buf);
for (var i=0, strLen=str.length; i<strLen; i++) {
bufView[i] = str.charCodeAt(i);
}
return buf;
}
由于視圖的構造函數(shù)可以指定起始位置和長度,所以在同一段內存之中,可以依次存放不同類型的數(shù)據,這叫做“復合視圖”。
var buffer = new ArrayBuffer(24);
var idView = new Uint32Array(buffer, 0, 1);
var usernameView = new Uint8Array(buffer, 4, 16);
var amountDueView = new Float32Array(buffer, 20, 1);
上面代碼將一個24字節(jié)長度的ArrayBuffer對象,分成三個部分:
這種數(shù)據結構可以用如下的C語言描述:
struct someStruct {
unsigned long id;
char username[16];
float amountDue;
};
如果一段數(shù)據包括多種類型(比如服務器傳來的HTTP數(shù)據),這時除了建立ArrayBuffer對象的復合視圖以外,還可以通過DataView視圖進行操作。
DataView視圖提供更多操作選項,而且支持設定字節(jié)序。本來,在設計目的上,ArrayBuffer對象的各種類型化視圖,是用來向網卡、聲卡之類的本機設備傳送數(shù)據,所以使用本機的字節(jié)序就可以了;而DataView的設計目的,是用來處理網絡設備傳來的數(shù)據,所以大端字節(jié)序或小端字節(jié)序是可以自行設定的。
DataView本身也是構造函數(shù),接受一個ArrayBuffer對象作為參數(shù),生成視圖。
DataView(ArrayBuffer buffer [, 字節(jié)起始位置 [, 長度]]);
下面是一個實例。
var buffer = new ArrayBuffer(24);
var dv = new DataView(buffer);
DataView視圖提供以下方法讀取內存:
這一系列get方法的參數(shù)都是一個字節(jié)序號,表示從哪個字節(jié)開始讀取。
var buffer = new ArrayBuffer(24);
var dv = new DataView(buffer);
// 從第1個字節(jié)讀取一個8位無符號整數(shù)
var v1 = dv.getUint8(0);
// 從第2個字節(jié)讀取一個16位無符號整數(shù)
var v2 = dv.getUint16(1);
// 從第4個字節(jié)讀取一個16位無符號整數(shù)
var v3 = dv.getUint16(3);
上面代碼讀取了ArrayBuffer對象的前5個字節(jié),其中有一個8位整數(shù)和兩個十六位整數(shù)。
如果一次讀取兩個或兩個以上字節(jié),就必須明確數(shù)據的存儲方式,到底是小端字節(jié)序還是大端字節(jié)序。默認情況下,DataView的get方法使用大端字節(jié)序解讀數(shù)據,如果需要使用小端字節(jié)序解讀,必須在get方法的第二個參數(shù)指定true。
// 小端字節(jié)序
var v1 = dv.getUint16(1, true);
// 大端字節(jié)序
var v2 = dv.getUint16(3, false);
// 大端字節(jié)序
var v3 = dv.getUint16(3);
DataView視圖提供以下方法寫入內存:
這一系列set方法,接受兩個參數(shù),第一個參數(shù)是字節(jié)序號,表示從哪個字節(jié)開始寫入,第二個參數(shù)為寫入的數(shù)據。對于那些寫入兩個或兩個以上字節(jié)的方法,需要指定第三個參數(shù),false或者undefined表示使用大端字節(jié)序寫入,true表示使用小端字節(jié)序寫入。
// 在第1個字節(jié),以大端字節(jié)序寫入值為25的32位整數(shù)
dv.setInt32(0, 25, false);
// 在第5個字節(jié),以大端字節(jié)序寫入值為25的32位整數(shù)
dv.setInt32(4, 25);
// 在第9個字節(jié),以小端字節(jié)序寫入值為2.5的32位浮點數(shù)
dv.setFloat32(8, 2.5, true);
如果不確定正在使用的計算機的字節(jié)序,可以采用下面的判斷方式。
var littleEndian = (function() {
var buffer = new ArrayBuffer(2);
new DataView(buffer).setInt16(0, 256, true);
return new Int16Array(buffer)[0] === 256;
})();
如果返回true,就是小端字節(jié)序;如果返回false,就是大端字節(jié)序。
傳統(tǒng)上,服務器通過Ajax操作只能返回文本數(shù)據。XMLHttpRequest 第二版允許服務器返回二進制數(shù)據,這時分成兩種情況。如果明確知道返回的二進制數(shù)據類型,可以把返回類型(responseType)設為arraybuffer;如果不知道,就設為blob。
xhr.responseType = 'arraybuffer';
如果知道傳回來的是32位整數(shù),可以像下面這樣處理。
xhr.onreadystatechange = function () {
if (req.readyState === 4 ) {
var arrayResponse = xhr.response;
var dataView = new DataView(arrayResponse);
var ints = new Uint32Array(dataView.byteLength / 4);
xhrDiv.style.backgroundColor = "#00FF00";
xhrDiv.innerText = "Array is " + ints.length + "uints long";
}
}
網頁Canvas元素輸出的二進制像素數(shù)據,就是類型化數(shù)組。
var canvas = document.getElementById('myCanvas');
var ctx = canvas.getContext('2d');
var imageData = ctx.getImageData(0,0, 200, 100);
var typedArray = imageData.data;
需要注意的是,上面代碼的typedArray雖然是一個類型化數(shù)組,但是它的視圖類型是一種針對Canvas元素的專有類型Uint8ClampedArray。這個視圖類型的特點,就是專門針對顏色,把每個字節(jié)解讀為無符號的8位整數(shù),即只能取值0~255,而且發(fā)生運算的時候自動過濾高位溢出。這為圖像處理帶來了巨大的方便。
舉例來說,如果把像素的顏色值設為Uint8Array類型,那么乘以一個gamma值的時候,就必須這樣計算:
u8[i] = Math.min(255, Math.max(0, u8[i] * gamma));
因為Uint8Array類型對于大于255的運算結果(比如0xFF+1),會自動變?yōu)?x00,所以圖像處理必須要像上面這樣算。這樣做很麻煩,而且影響性能。如果將顏色值設為Uint8ClampedArray類型,計算就簡化許多。
pixels[i] *= gamma;
Uint8ClampedArray類型確保將小于0的值設為0,將大于255的值設為255。注意,IE 10不支持該類型。
如果知道一個文件的二進制數(shù)據類型,也可以將這個文件讀取為類型化數(shù)組。
reader.readAsArrayBuffer(file);
下面以處理bmp文件為例。假定file變量是一個指向bmp文件的文件對象,首先讀取文件。
var reader = new FileReader();
reader.addEventListener("load", processimage, false);
reader.readAsArrayBuffer(file);
然后,定義處理圖像的回調函數(shù):先在二進制數(shù)據之上建立一個DataView視圖,再建立一個bitmap對象,用于存放處理后的數(shù)據,最后將圖像展示在canvas元素之中。
function processimage(e) {
var buffer = e.target.result;
var datav = new DataView(buffer);
var bitmap = {};
// 具體的處理步驟
}
具體處理圖像數(shù)據時,先處理bmp的文件頭。具體每個文件頭的格式和定義,請參閱有關資料。
bitmap.fileheader = {};
bitmap.fileheader.bfType = datav.getUint16(0, true);
bitmap.fileheader.bfSize = datav.getUint32(2, true);
bitmap.fileheader.bfReserved1 = datav.getUint16(6, true);
bitmap.fileheader.bfReserved2 = datav.getUint16(8, true);
bitmap.fileheader.bfOffBits = datav.getUint32(10, true);
接著處理圖像元信息部分。
bitmap.infoheader = {};
bitmap.infoheader.biSize = datav.getUint32(14, true);
bitmap.infoheader.biWidth = datav.getUint32(18, true);
bitmap.infoheader.biHeight = datav.getUint32(22, true);
bitmap.infoheader.biPlanes = datav.getUint16(26, true);
bitmap.infoheader.biBitCount = datav.getUint16(28, true);
bitmap.infoheader.biCompression = datav.getUint32(30, true);
bitmap.infoheader.biSizeImage = datav.getUint32(34, true);
bitmap.infoheader.biXPelsPerMeter = datav.getUint32(38, true);
bitmap.infoheader.biYPelsPerMeter = datav.getUint32(42, true);
bitmap.infoheader.biClrUsed = datav.getUint32(46, true);
bitmap.infoheader.biClrImportant = datav.getUint32(50, true);
最后處理圖像本身的像素信息。
var start = bitmap.fileheader.bfOffBits;
bitmap.pixels = new Uint8Array(buffer, start);
至此,圖像文件的數(shù)據全部處理完成。下一步,可以根據需要,進行圖像變形,或者轉換格式,或者展示在Canvas網頁元素之中。
Ian Elliot, Reading A BMP File In JavaScript
更多建議: